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Introduction

Problems are at the heart of mathematics.
Proposing good contest problems is crucial to mathematics competitions. What kind of
contest problems is good? The criterion in mathematics is that the problems should be
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natural, reasonable and also elegant, that is, with unique perspective, original structure
and brief description. Since mathematics competitions are a time-limited and space-
restricted problem-solving activities, the educational criterion should be also taken into
consideration. The problems should be of moderate difficulty, low threshold and adequate
complexity. In short, a good math problem for high school students should be elementary
mathematics problems, which are natural and elegant, yet with educational function.

Difficulty assessment is one important task in the problem-designing process. The test
paper for mathematics competition is required to have three levels of problems: easy,
intermediate and advanced, with a ratio of 2:2:2 in CMO (Chinese Mathematical Olym-
piad). Therefore, the test designer should assess the difficulty of every potential problem,
especially from the perspective of students.
The goal of problem designers is to develop innovative problems with high item discrimination
that uncover the beauty of mathematics.

We will provide some examples to share our experience in proposing problems in two parts.
This paper is the first part.

A problem originated from Tao’s result

In 2009, the following result due to Terence Tao appeared in Romanian TST [3].

Theorem 1. Let A,B ⊆ Z be two finite sets. Then there exists X ⊆ Z satisfying |X| ≤
|A+B|
|B| such that

B ⊆ X +A−A,

where A+B = {a+ b | a ∈ A, b ∈ B}, A−B = {a− b | a ∈ A, b ∈ B}.

During our reading, we found an interesting fact. Consider a special case: Let A =
{−n,−n+ 1, · · · , n− 1, n} and B = {x1, x2, · · · , xm} be two sets of integers with x1 <
x2 < · · · < xm. By Tao’s theorem, there exists a set X ⊆ Z satisfying

|X| ≤ 1 + 1
2n+ 1 (xm − x1) ,

such that xi = x+ s, where x ∈ X, s ∈ [−2n, 2n].
However, we found that Tao’s result is not strong enough for this special case, and realized
that the range of s can be improved to [−n, n]. Thus, we used Tao’s frame to produce a
problem which requires new methods.

Problem 7. Let m,n > 1 be two given integers and let a1 < a2 < · · · < am be m integers.
Prove that there exists a subset T of integers such that

|T | ≤ 1 + 1
2n+ 1(am − a1),

and for each i ∈ {1, 2, . . . ,m}, t ∈ T and s ∈ [−n, n], one has ai = t+ s.

Solution. Let a1 = a, am = b and

b− a = (2n+ 1)q + r,
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where q, r ∈ Z, 0 ≤ r ≤ 2n.
Let

T = {a+ n+ (2n+ 1)k | k = 0, 1, · · · , q}.

Then,
|T | = q + 1 ≤ 1 + b− a

2n+ 1 ,

and the set

B := {t+ s | t ∈ T, s = −n,−n+ 1, · · · , n}
= {a, a+ 1, · · · , a+ (2n+ 1)q + 2n}.

Noticing that
a+ (2n+ 1)q + 2n ≥ a+ (2n+ 1)q + r = b,

we have that each ai belongs to B. The conclusion follows.

It was actually the fourth problem of the 25th CMO in 2010 (see [7]). During the exam,
nearly three quarters of the students got it right.

The expansion property of pedal triangles

Let P be an interior point of4ABC, and D,E, F be the projection of P onto BC,CA,AB
respectively. We call the triangle 4DEF the pedal triangle about P .
There are the following two famous theorems in elementary geometry.

Theorem 2. The area of a parallelogram in any triangle is no more than half of the area
of the triangle.

Theorem 3. Let P be an interior point of 4ABC, then the area of the pedal triangle
about P is no more than 1

4S4ABC .

We found that Theorem 3 can be deduced from Theorem 2. This is because that we
established an expansion property of pedal triangle. Its special version for acute triangles
became one of the problems in Chinese Western Mathematical Olympiad in 2003 (see [5]).

Problem 8. Let P be an interior point of an acute triangle 4ABC, and let 4DEF be
the pedal triangle about P. Show that there is a parallelogram contained in 4ABC, such
that its two adjacent edges are exactly two edges of 4DEF.

Proof. Let O be the circumcenter of 4ABC. Since 4ABC is acute, O lies in the interior
of 4ABC. Without loss of generality, we may assume that P lie in 4AOB. See Figure 2.
To prove the parallelogram DFEG with adjacent edges FE, FD lies in 4ABC, we only
need to prove

∠FEG ≤ ∠FEC, (0.0.2)

∠FDG ≤ ∠FDC. (0.0.3)

Since
∠FEG = ∠AFE + ∠BFD, ∠FEC = ∠AFE + ∠A.
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Figure 2:

So to pove (0.0.2), we only need to prove

∠BFD ≤ ∠A. (0.0.4)

In fact, since that four points B, F, P and D are on a circle, we have

∠BFD = ∠BPD. (0.0.5)

Draw a line OH ⊥ BC with H the foot of perpendicular. By

∠PBD ≥ ∠BOH,

we have
∠BPD ≤ ∠BOH. (0.0.6)

Moreover, since O is the circumcenter of 4ABC, it follows that

∠BOH = ∠BAC = ∠A. (0.0.7)

From (0.0.5), (0.0.6), (0.0.7), (0.0.4), the proof of (0.0.2) is completed. The proof of (0.0.3)
is similar.

The cardinal number of the maximal independent
set

S. Fajtlowicz proved the following result in [4].

Theorem 4. Suppose that G is a simple graph with n vertices and maximal degree p.
Assume that G does not contain the complete subgraph with q vertices. If p ≥ q, then the
cardinal number α of the maximal independent set of G satisfies

α ≥ 2n
p+ q

.
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Furthermore, S. Fajtlowicz studied the equality conditions for the above inequality in
another paper [2] and proved the following.

Theorem 5. If q ≤ p, then α = 2p
p+q implies 3q − 2p ≤ 5. Moreover, for positive integers

p1 and q1 with 3q1 − 2p1 = 5, there exists an unique connected graph such that p = p1,
q = q1 and α = 2n

p+q .

After reading these two papers, we got an idea. Could we unite these results to yield a
combinatorial extremal problem about the maximal independent subset of graphs? Testing
some special values of n, p, q, we decided to set n = 30, p = 5, q = 5 and proposed the
following problem.

Problem 9. Let G be a simple graph. Suppose that the degree of each vertex is at most 5,
and for any 5 points of G, there are two points without any edge connecting them. Find
the minimal cardinal number of the maximal independent subset.

The answer to this problem is 6. The proof is not hard, but the construction is a challenge
for us, because it would be tedious and non-intuitive if we perform the construction along
with the original method. Finally, we found a simple but interesting combinatorial model.
That is, we construct a graph G that can be written as the disjoint union of 3 subgraphs,
and each subgraph “looks like a pentagonal prism”.
When we have the intuitive construction, it would be appropriate for competition test for
high school students. To make the problem more interesting, we verified the statement
and proposed the fifth problem of the 30th CMO in 2015 (see [8]).

Problem 10. There are 30 persons in a meeting. Each person has at most 5 acquaintances.
For any 5 persons, there are at least 2 of them who do not know each other. Determine
the maximal positive integer k such that, for 30 persons satisfying the above conditions,
there are k persons who do not know each other.

Proof. The desired value of k is 6.
We can use 30 vertices to denote the persons. If two persons know each other, then we
can draw an edge between the corresponding vertices. Thus, we get a simple graph G with
the vertex set of 30 points satisfying the following conditions:
(i) The degree of each vertex of G is no more than 5.
(ii) For any 5 vertices of G, there are 2 vertices without connecting edges.
Denote the vertex set of G by V . If A ⊆ G and any 2 vertices of A have no connecting
edge, then we call A an “independent set” of G. An independent set is called the maximal
independent set if its number of elements is maximal.
(1) We first show that the cardinal number of the maximal independent set of G that
satisfies the conditions is no less than 6.
In fact, let X be a maximal independent set of G. By the maximality of |X|, any vertex
of V \X has an adjacent vertex in X. Otherwise, if a ∈ V \X does not have any adjacent
vertices in X, then we can add the point a into X and get a bigger independent set. A
contradiction. Thus, there are at least |V \X| = 30 − |X| edges between V \X and X.
Notice that the degree of each vertex of X is no more than 5. Hence, we have

30− |X| ≤ 5|X|, (0.0.8)
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which gives |X| ≥ 5.
If |X| = 5, then by the equality condition of (0.0.8), these 30 − |X| = 25 edges are
distributed to the 5 vertices of X; i.e., the adjacent vertex set of each vertex of X is
formed by 5 vertices of V \ X. Since |V \ X| = 25, the adjacent vertex sets of any two
vertices in X do not intersect. Denote X = {a, b, c, d, e}. Consider the adjacent vertex set
of a and denote it by Ya = {y1, y2, y3, y4, y5}. By condition (ii), there are two vertices in
Ya have no connecting edge, say y1, y2. Since the adjacent vertex sets of any two vertices
do not intersect, y1, y2 are not the adjacent vertices of any point among b, c, d, e. Hence
{y1, y2, b, c, d, e} is an independent set of G, and the number of elements is greater than 5.
A contradiction. Therefore, |X| ≥ 6.
(2) Next we will prove that there exists a graph G satisfying the conditions such that the
cardinal number of each maximal independent set is no more than 6.
Divide V into 3 sets V1, V2, V3 such that |Vi| = 10, i = 1, 2, 3. Let
V1 = {A1, A2, A3, A4, A5, B1, B2, B3, B4, B5}. Connect the vertices of V1 in the following
way (as shown in Figure 3).

Figure 3:

(I) Connect edges AiAi+1, i = 1, 2, 3, 4, 5;
(II) Connect edges BiBi+1, i = 1, 2, 3, 4, 5;
(III) Connect edges AiBi, AiBi+1, AiBi−1, i = 1, 2, 3, 4, 5,
where A6 = A1, B6 = B1, B0 = B5.
The connecting ways of the vertex sets V2, V3 are completely the same as V1, and for any
1 ≤ i < j ≤ 3, there are no edges connecting Vi and Vj . Then the degree of each vertex
of G is always 5 and there exist 2 vertices among any 5 vertices in G without connecting
edges.
For any maximal independent set X of G, we will show |Vi ∩X| ≤ 2.
In fact, since Ai and Ai+1 are adjacent (i = 1, 2, 3, 4, 5), there are at most two sets
among A1, . . . , A5 belonging to X. Similarly, there are at most two sets among B1, . . . , B5

44



Mathematics Competitions Vol 34 No 2 2021

belonging to X. If there are exactly two sets among A1, . . . , A5 belonging to X, say
{A1, A3}, then the union of the adjacent vertex sets ofA1, A3 is precisely {B1, B2, B3, B4, B5}.
Thus, B1, B2, B3, B4, B5 do not belong to X. Similarly, if there are exactly two sets among
B1, . . . , B5 belonging to X, then A1, A2, A3, A4, A5 do not belong to X. This proves that
|V1 ∩X| ≤ 2.
A similar arguement yields |V2 ∩X| ≤ 2, |V3 ∩X| ≤ 2. Thus,

|X| = |V ∩X| = |V1 ∩X|+ |V2 ∩X|+ |V3 ∩X| ≤ 6.

Therefore, G has the desired property.
By the results of (1) and (2), it follows that k = 6.

During the exam, one fifth of the participants got it right, which indicates this problem is
a hard problem.

Finding isosceles trapezoids

In the 47th IMO (2007) in Vietnam, the leader of the Belorussian team presented some
material to us, in which there were three problems for three grades in Belarus (A,B,C):

Problem 11. Color each point on the circle with red or blue. Each point is colored only
once.

(1) Does there exist an equilateral triangle with vertices of the same color?

(2) Prove that there must be an isosceles triangle with vertices of the same color.

Solution: (1) The answer is negative. We only need to color one semicircle red and the
other blue. Thus, there does not exist an equilateral triangle with vertices of the same
color.
(2) Consider a regular pentagon inscribed in the circle. It is easy to see that there are at
least 3 vertices of the same color among all 5 vertices. On the other hand, any 3 vertices
of the regular pentagon form an isosceles triangle. The conclusion follows. �

Problem 12. Color each point on the circle with red or blue. Each point is colored only
once.

(1) Is there always an inscribed rectangle with vertices of the same color?

(2) Prove that there must be an inscribed trapezoid with vertices of the same color.

The answer of (1) is negative. It is easy to check by coloring two semicircles with different
colors. In this case, there is no inscribed rectangles with vertices of the same color. The
offprint from the manager of the Belorussian team did not provide the answer, but it
claimed that (2) is a special case of the following problem.

Problem 13. Color each point on the circle with one of the N colors. Each point is
colored only once. Prove that there exists an isosceles trapezoid with vertices of the same
color.
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Proof 1. Let A1, A2, . . . , AN+1 be n + 1 points on the circle. If the arc distances of any
2 adjacent points are all equal to a constant a > 0 which is independent of N , then we
call these N + 1 points a block. Now we choose N2 + 1 blocks on the semicircle which
don’t meet each other (It can be true if a is small enough). Notice that each block has two
points of the same color, and then we let the color be C with the arc distance l between
these two points. Thus, each block is associated with a pair (C, l). Since (C, l) has exactly
N2 different values, by the pigeonhole principle, these N2 +1 blocks must have two blocks
with the same pair (C1, l1). So the four points of the same color in the two blocks form
an isosceles trapezoid.

The advantage of Proof 1 is if we take such N2 + 1 blocks from the semicircle, then we
can find an isosceles trapezoid rather than a rectangle.

Proof 2. LetKN+1 be positive odd (whereK is an undetermined even number). Consider
the vertices of a regular (KN + 1)-polygon. By the pigeonhole principle, these must be
K + 1 vertices of the same color, whose arc distances have

(K+1
2
)

values. But the vertices
of the (KN + 1)-polygon yields KN

2 different arc distances. Thus, if K satisfies(
K + 1

2

)
> 2 · KN2 ,

then we can find 3 arcs with endpoints of the same color, whose distances are identical
when K > 2N−1. Hence there are two arcs of the same color without common endpoints,
whose distances are identical. Because the diagonals of regular polygons with odd edges
don’t pass through the origin, such four vertices form an isosceles trapezoid with vertices
of the same color.

The well-known van der Waerden theorem states that for any given positive integer N and
l, there exists W (l, N) such that when n > W (l, N), the set {1, 2, . . . , n}, after N -coloring,
must have an l-term arithmetic progression with same color. (Another weaker but also
very common version of van der Waerden’s theorem says that the set of integers, after finite
coloring, must have an arithmetic progression of the same color with arbitrary length.)
The essence of Problem 13 is actually a special case of the van der Waerden theorem. In
fact, let us divide the semicircle equally into W (4, N) parts, and then denote the points of
division by 1, 2, . . . ,W (4, N). Then there exists an 4-term arithmetic sequence with same
color, and the corresponding four points form an isosceles trapezoid with same color.
All these problems and their background motivate us to design a new problem. They
inspired us to find the isosceles trapezoid with same color in a regular odd n-polygon.

Problem 14. Find the smallest possible of n such that, after 2-coloring for the vertices
of a regular odd n-polygon, there exists an isosceles trapezoid with vertices of same color.

Proof. Obviously, when n ≤ 7, we can color any 4 points among vertices red and the
others blue, where these 4 points don’t form a trapezoid. Then there does not exist a
trapezoid of the same color. So we always assume n ≥ 9.
When n = 9, we will show that after 2-coloring for regular 9-polygons, there exist
trapezoids of the same color.
By pigeonhole principle, there are 5 points with same color. Assume that the color is
red. For any vertices A and B of a regular 9-polygon, we connect AB and consider the
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minor arc AB. If the minor arc AB contains r − 1 vertices (r = 1, 2, 3, 4) of the regular
9-polygon, then we say that the span of the the minor arc AB is r. The 5 red points have
C2

5 = 10 spans. There are only 4 different spans, and thus there are
⌈10

4
⌉

+ 1 = 3 pairs
have a same span.
If the points in the 3 pairs don’t form any regular triangles, then they must form a red
trapezoid. If they form a regular triangle, then the span is 3. Assume that these 3 red
vertices are 1, 4, 7. There are at least 2 other red points. Each point forms a minor arc
with one of 1, 4, 7 with span of 1. This yields a red isosceles trapezoid.
In conclusion, the smallest possible n is 9.

This problem is rather simple. To make it more difficult, we need to consider similar
problems of 3-coloring for regular polygons with odd number of edges.

Problem 15. Find the smallest possible odd number n such that among the vertices of
a regular polygon with n edges, after 3-colored, there exists an isosceles trapezoid with
vertices of same color.

If we add another color, then the argument and construction become more difficult (Problem
13 didn’t require any construction.)
Problem 15 is of great difficulty. Finally, we found that there is a counterexample for
regular 15-polygon, and the minimum is 17.
Now let us go further: in the previous discussion we focused on regular polygons with
odd number of edges, because in that case we believe it would be easier to find isosceles
trapezoids with same color. But it is possible that regular polygons with even numbers of
edges may have rectangles with vertices all having the same color. This will precisely be
the starting point of our new problem. We studied regular 16-polygons and 18-polygons,
and we found counterexamples for the problem we just proposed for both polygons. The
counterexample for regular 18-polygons is accidentally misleading for the problem related
to general regular polygons. Indeed, it seems reasonable to guess that n = 19 is the desired
minimum based on the counterexample of n = 18. Based on our study of the problem
with three colors, the fifth problem of the 23th CMO in 2008 (See [6]) is as follows.

Problem 16. Find the smallest positive integer n which has following properties: whenever
we color each vertex of regular n-polygons arbitrarily with one of three colors (red, yellow,
blue), there always exist four vertices with same color that are the vertices of an isosceles
trapezoid.

Solution. The smallest possible n is 17.
We first show that the conclusion holds when n = 17.
By contradiction, we assume that there is a way of coloring the vertices of the regular
17-polygon with three colors such that there do not exist four vertices of the same color
such that they are the vertices of an isosceles trapezoid.
Since

[17−1
3
]

+ 1 = 6, there must exist 6 vertices of same color, say, yellow. Connecting
these 6 vertices with each other yields

(6
2
)

= 15 segments. Since the lengths of segments
have only

⌈17
2
⌉

= 8 possible values, there must be one of the following two cases.
(1) There are 3 segments with the same length.
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Notice that 17 is not a multiple of 3. It is impossible that any 2 segments among these
3 segments have a common vertex. So there exist two segments with different vertices.
Thus, these 4 vertices of 2 segments satisfy the requirement, a contradiction.
(2) There are 7 pairs of segments with the same length.
By assumption each pair of segments must have a common yellow vertex. Otherwise we
can find 4 yellow vertices satisfy the requirement. By the pigeonhole principle, there must
be two pairs of segments that share the common yellow vertex. The other 4 vertices of
these 4 segments must be the vertices of an isosceles trapezoid, a contradiction.
Therefore, when n = 17 the conclusion follows.
Next, when n ≤ 16, we will construct a way of coloring, which does not satisfy the
requirement. Denote the vertices of the regular n-polygon (clockwise) by A1, A2, . . . , An.
Let M1,M2,M3 be the vertex sets of three colors, respectively.
If n = 16, let

M1 = {A5, A8, A13, A14, A16},
M2 = {A3, A6, A7, A11, A15},
M3 = {A1, A2, A4, A9, A10, A12}.

For M1, the distances from A14 to any other verteices are unique, while the other 4 vertices
are exactly the vertices of a rectangle. Similarly, one can verify that there do not exist
4 vertices in M2, such that they are vertices of an isosceles trapezoid. For M3, the 6
vertices are exactly the vertices of 3 diameters, so any 4 of them are either the vertices of
a rectangle, or the vertices of a quadrilateral who is not an isosceles trapezoid.
If n = 15, let

M1 = {A1, A2, A3, A5, A8},
M2 = {A6, A9, A13, A14, A15},
M3 = {A4, A7, A10, A11, A12},

where each Mi does not have 4 points who are the vertices of an isosceles trapezoid.
If n = 14, let

M1 = {A1, A3, A8, A10, A14},
M2 = {A4, A5, A7, A11, A12},
M3 = {A2, A6, A9, A13}.

Each Mi does not have 4 points satisfying that they are the vertices of an isosceles
trapezoid.
If n = 13, let

M1 = {A5, A6, A7, A10},
M2 = {A1, A8, A11, A12},
M3 = {A2, A3, A4, A9, A13}.

Each Mi does not have 4 points satisfying that they are the vertices of an isosceles
trapezoid.
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Deleting the vertex A13, and then coloring other vertices as same as the case n = 13, we
get the coloring method for n = 12. Next and similarly, deleting the vertex A12 we get the
coloring method for n = 11. At last, deleting the vertex A11 we get the coloring method
for n = 10.
When n ≤ 9, we can let the number of vertices of same color be less than 4. Thus there
are not 4 vertices of same color, such that they are vertices of an isosceles trapezoid.
The above constructions show that the case n ≤ 16 does not satisfy the requirement.
In conclusion, the smallest possible n is 17.

During the exam, nearly a quarter of students got it right, which indicates that this
problem is of intermediate difficulty with high item discrimination.

Problems on convex sequences

In the 1990s, the USA TST (see [1]) used the following problem.

Problem 17. Color each positive integer of 1, 2, · · · , n(n2−2n+3)
2 (n ≥ 2) by one of two

colors (red and blue). Prove that there exists an n-term sequence a1 < a2 < · · · < an of
the same color satisfying a2 − a1 ≤ a3 − a2 ≤ · · · ≤ an − an−1.

The solution depends on a strengthening induction.

Proof. Let Sn = n(n2−2n+3)
2 . If a sequence a1 < a2 < · · · < an satisfies

a2 − a1 ≤ a3 − a2 ≤ · · · ≤ an − an−1 ≤ m,

then we call it an n-term m-sequence.
By induction, we will prove a stronger proposition: after a 2-coloring for {1, 2, · · · , Sn},
there must be contain an n-term 3

(n
2
)
-sequence of the same color.

In fact, the case n = 2 is trivial.
Assume that after a 2-coloring for {1, 2, · · · , Sn}, there is a red n-term 3

(n
2
)
-sequence.

Notice that
Sn+1 − Sn = 3

(
n

2

)
+
(
n

1

)
+ 1.

Consider the following n+ 1 numbers

an + 3
(
n

2

)
, an + 3

(
n

2

)
+ 1, · · · , an + 3

(
n

2

)
+ n,

where
an + 3

(
n

2

)
+ n < Sn + 3

(
n

2

)
+
(
n

1

)
+ 1 = Sn+1.
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If the terms are all blue, then we get a blue (n + 1)-term 1-sequence, and the conclusion
follows. Otherwise, there is at least one red term, say, an + 3

(n
2
)

+ k (0 ≤ k ≤ n). Let
an+1 = an + 3

(n
2
)

+ k. Then

an+1 − an = 3
(
n

2

)
+ k = 3

(
n+ 1

2

)
− 3

(
n

1

)
+ k ≤ 3

(
n+ 1

2

)
.

Thus, we get a red (n+1)-term 3
(n+1

2
)
-sequence. The proof is completed by induction.

The above question shows that after a 2-coloring for 1, 2, · · · , n(n2−2n+3)
2 , there exists an

n-term convex sequence of the same color. It is a very interesting question, which often
appeared in the frontier research in combinatorial mathematics. A natural question is
whether the result n(n2−2n+3)

2 could become smaller.
Now we consider the following problem.

Problem 18. Find the minimum of positive integer f(n) such that there exist a convex
n-term sequence of the same color after 2-coloring for the sequence 1, 2, · · · , f(n).

Firstly, we concentrated on the solution of Problem 17 to improve the upper bound. We
did find some ways to make the upper bound smaller. However, the improved upper bound
is a polynomial of n with degree 3, which means that we had not succeed in improving
upon the order of n. With many unsuccessful attempts , we were stuck.
One day, a simple but natural idea occurred to us: a counterexample shows that the upper
bound can not be better than n2 − n.

In fact, we can do a 2-coloring in the following way: color one point red and another point
blue, then color two points red and another two points blue, color three points red and
another three points blue,......, and do this alternately. At last, we color n− 1 points red
and n−1 blue. For this coloring, there does not exist a convex n-term sequence with same
color in {1, 2, · · · , n2 − n}.
With this counterexample, we may conjecture the minimum to be f(n) = n2 − n + 1.
Unfortunately, this conjecture remains open. However, this counterexample is sufficient
to produce an intermediate contest problem as follows.

Problem 19. We color n2 − n numbers: 1, 2, · · · , n2 − n (n ≥ 2) red or blue. Prove that
there exists a way of coloring such that there don’t exist n numbers a1 < a2 < · · · < an
with same color satisfying ak ≤ ak−1+ak+1

2 (k = 2, 3, · · · , n− 1).

Compared with the original problem, Problem 19 is totally new, which can be restated in
the language of set classifying. This is the third problem of the 23th CMO in 2008.

Problem 20. Given a positive integer n with n ≥ 3, prove that the set X = {1, 2, · · · , n2−
n} can be divided into two disjoint nonempty subsets of X, such that these two subsets
don’t contain n elements a1 < a2 < · · · < an satisfying ak ≤ ak−1+ak+1

2 (k = 2, 3, · · · , n−1).

Proof. Define

Sk = {k2 − k + 1, k2 − k + 2, . . . , k2}, Tk = {k2 + 1, k2 + 2, . . . , k2 + k},
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where k = 1, 2, . . . , n− 1. Let S = ⋃n−1
k=1 Sk, T = ⋃n−1

k=1 Tk. We will show that the sets S, T
satisfy the requirement.
Firstly, S ∩ T = ∅ and S ∪ T = X.
Secondly, if the set S has n elements a1, a2, . . . , an(a1 < a2 < · · · < an) satisfying

ak ≤
ak+1 + ak−1

2 ,

where k = 2, 3, . . . , n− 1, then

ak − ak−1 ≤ ak+1 − ak. (0.0.9)

Assume without loss of generality that a1 ∈ Si. Since |Sn−1| < n, it follows that i <
n − 1. Thus, for n elements a1, a2, . . . , an, there are at least n − |Si| = n − i elements in
Si+1 ∪ · · · ∪ Sn−1. By the pigeonhole principle, there must be a Sj(i < j < n) containing
at least two elements. Let ak∈ Sj such that k is smallest possible, then ak, ak+1 ∈ Sj .
But ak−1 ∈ S1 ∪ · · · ∪ Sj−1, so ak+1 − ak ≤ |Sj | − 1 = j − 1, ak − ak−1 ≥ |Tj−1| + 1 = j.
Thus, ak+1 − ak < ak − ak−1, which contradicts against (0.0.9). It implies that the set S
does not have n elements satisfying the requirement.
Similarly, the set T does not have such n elements, either.
This shows that the sets S, T satisfy the requirement.

We recalled that nearly one third of students gave the right answer, which shows this
problem is of intermediate difficulty and has high item discrimination.
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of the USA IMO team. Birkhäuser Boston, Inc., Boston, MA, 2003. xii+115 pp.
ISBN:0-8176-4317-6.

[2] Siemion Fajtlowicz, Independence, clique size and maximum degree. Combinatorica
4 (1984), no. 1, 35-38.

[3] Radu Gologan and Dan Schwarz, Romanian Mathematical Competitions, Bucharest,
2009.

51



Mathematics Competitions Vol 34 No 2 2021

[4] Siemion Fajtlowicz, On the size of independent sets in graphs, in: Frederick Hoffman,
D. McCarthy, Ronald C. Mullin and Ralph G. Stanton (eds.), Proceedings of the
Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing.
Held at Florida Atlantic University, Boca Raton, Fla., January 30- February 2, 1978.
Congressus Numerantium, XXI. Utilitas Mathematica Publishing, Inc., Winnipeg,
Man., 1978. ISBN: 0-919628-21-4, 269-274.

[5] Bin Xiong and Peng Yee Lee, Mathematical olympiad in China. Problems and
solutions. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ; East China
Normal University Press, Shanghai, 2007. xxii+251 pp. ISBN: 978-981-270-789-5;
981-270-789-1

[6] Bin Xiong and Peng Yee Lee, Mathematical Olympiad in China (2007-2008).
Problems and solutions. Edited by World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ; East China Normal University Press, Shanghai, 2009. xxvi+194
pp. ISBN: 978-981-4261-14-2; 981-4261-14-9

[7] Bin Xiong and Peng Yee Lee, Mathematical Olympiad in China (2009-2010).
Problems and solutions. Translated by Mathematical Olympiad Series, 9. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ; East China Normal University
Press, Shanghai, 2013. xxvi+178 pp. ISBN: 978-981-4390-21-7

[8] Coaching team of China national team in 2015, Towards IMO, Mathematical Olym-
piad questions (Chinese), Shanghai, 2015.

Bin Xiong∗
School of Mathematical Sciences, East China Normal University,
Shanghai 200241, China

Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,
Shanghai 200241, China
bxiong@math.ecnu.edu.cn

Gangsong Leng
Department of Mathematics, Shanghai University,
Shanghai 200444, China
gleng@staff.shu.edu.cn

∗ Corresponding author

52


	Contents
	World Federation of National Mathematics Competitions
	From the President
	Editor’s Page
	The International Mathematical Olympiad, Age 62
	In search of lost time: Gifted Iranian Students and the Tuymaada Olympiad
	The Art of Proposing Problems in Mathematics Competitions I
	Revisiting the Competition Corner
	A Problem in Combinatorial Number Theory
	Mixers and Sorters
	The Martian Citizenship Quiz
	International Mathematics Tournament of the Towns



